
2
THE CLASSIC EVENT MANAGER — LOW-
LEVEL AND OPERATING SYSTEM
EVENTS
 Demonstration Program: LowEvents

The Two Event Managers
As stated at Chapter 1, there are two managers in the system software's Human Interface Group that
pertain to the subject of events. These two managers are:

 The Event Manager (often unofficially referred to, in the Carbon era, as the Classic Event
Manager).

 The somewhat more sophisticated Carbon Event Manager, which was introduced with Carbon.
Carbon applications may utilise either of these two event models. This chapter addresses the Classic event
model. The Carbon event model is addressed at Chapter 17.

Overview of the Classic Event Model

The Main Event Loop
Any Macintosh application displays one essential characteristic: it is event-driven. At its most basic level,
the application’s general strategy is to retrieve an event (such as a key press or a mouse click), process it,
retrieve the next event, process it, and so on indefinitely until the user quits the application. The core of
the application is thus the main event loop (see Fig 1).

FIG 1 - THE MAIN EVENT LOOP

EXIT
EVENT

Event
Queue

PROCESS
THE EVENT USER QUIT ?

EVENT
MANAGER

LAUNCH
AND

INITIALISE
RETRIEVE
AN EVENT

NO

YES

EVENT

EVENT LOOP

THE BULK OF AN APPLICATION'S SOURCE CODE IS
CONCERNED WITH PROCESSING EVENTS

EXIT

If no events are pending for the active application at a particular time, that application can choose to
relinquish control of the CPU (central processing unit, or microprocessor) for a specified amount of time

The Classic Event Manager — Low-Level and Operating System EventsVersion 1.0 2-1

before again checking to see whether an event has occurred. Events are retrieved, and processor time is
relinquished, using the WaitNextEvent function. The WaitNextEvent function is, in a sense, the core of the
Classic event model.
Information about a received event is placed in an event structure. An application may specify which
types of events it wants to receive by including an event mask as a parameter in certain Event Manager
functions.

Categories of Events
An application can receive many types of events. It can also send certain types of events to other
applications. Events are broadly categorised as low-level events, Operating System events, and high-
level events. The high-level event is the category of event used to send events to other applications.
Of the three categories, this chapter is concerned only with low-level events and Operating System events.
High-level events are addressed at Chapter 10.

Low Level Events
Low-level events, which are sent to the application by the Toolbox Event Manager, are originated by such
low-level occurrences as pressing and releasing a key and pressing and releasing the mouse button.
The Window Manager also originates low-level events, specifically, two events relating to an application’s
windows:

 The activate event, which has to do with informing the application to make changes to the
appearance of a window depending on whether or not it is the frontmost window.

 The update event, which has to do with informing the application to re-draw a window’s contents.
The event that reports that the Event Manager has no other events to report (the null event) is also
categorised as a low-level event.
Low-level events, except for update events and null events, are invariably directed to the foreground
process only.

Operating System Events
Operating system events are returned to the application when the operating status of an application
changes. For example, when an application has been switched to the background, the Process Manager
sends it a suspend event. Then, when the application is switched back to the foreground, the Process
Manager sends it a resume event.
Another Operating System event, called the mouse-moved event, is sent when the mouse pointer is moved
outside a designated region.

Processes and Events
The subject of processes is of some relevance to the subject of events, more particularly to operating
sustem events.
Ordinarily, a user will have more than one application running at the one time. The active application (the
application with which the user is currently interacting) is known as the foreground process. The
remaining open applications, if any, are known as background processes. The user can bring a
background process to the foreground by, for example, clicking in one of its windows. When an
application is switched between background and foreground in this way, a major switch is said to have
occurred.
The foreground process has first priority for accessing the CPU, background processes accessing the CPU
only when the foreground process yields time to them. Any application whose 'SIZE' resource (see below)
specifies that it should receive null events when it is in the background is eligible for CPU time when it is
not in the foreground. A minor switch is said to have occurred when a background process gains a period
of CPU access without being brought to the foreground.

2-2 Version 1.0 The Classic Event Manager — Low-Level and Operating System
Events

Low-Level and Operating System Events, System Software,
and Applications

Fig 2 shows the relationship between low-level and Operating System events, system software managers
and open applications.
In Fig 2, note that, in addition to the Operating System event queue created by the Operating System Event
Manager, the Toolbox Event Manager maintains a separate event stream for each open application. An
event stream contains only those events which are available to the related application. Also note that,
when an application is in the background, its event stream can contain only update events, null events, and
suspend events, the latter two only if the application's 'SIZE' resource so specifies.1

A maximum of 48 events can be pending in the Operating System event queue. If the queue becomes full,
the oldest event is discarded to make room for the new.

FIG 2 - LOW-LEVEL AND OPERATING SYSTEM EVENTS

APPLICATION
(FOREGROUND)

APPLICATION
(BACKGROUND)

APPLICATION
(BACKGROUND)

KEYBOARD, MOUSE
BUTTON, FLOPPY DRIVEWINDOW MANAGER

OPERATING SYSTEM
EVENT MANAGER

TOOLBOX EVENT MANAGER

activate
update

key up
key down
autokey

mouse up
mouse down

OPERATING SYSTEM
EVENT QUEUE

PROCESS MANAGER

suspend
resume

mouse- moved

EVENT STREAMEVENT STREAM EVENT STREAM

null

key up
key down
autokey

mouse up
mouse downt

activate
update

resume
mouse-moved

null

update

suspend

null

update

suspend

Priority of Events
In general, the Event Manager returns events to the application in the order low-level events, Operating
System events, and high-level events. In detail, the order of priority is:

 Activate events.
 Mouse-down, mouse-up, key-down, and key-up events in FIFO (first in, first out) order.
 Auto-key events.
 Update events, in front-to-back order of windows.
 Operating system events.
 High-level events.
 Null events.

1 An application in the background can also receive high-level events. (See Chapter 10.)

The Classic Event Manager — Low-Level and Operating System EventsVersion 1.0 2-3

Obtaining Information About Events

The Event Structure
The Event Manager continually captures information about each keystroke, mouse click, etc., and puts
information about each event into an event structure. As more actions occur, additional event structures
are created and joined to the first, forming an event queue.
The EventRecord data type defines the event structure:

struct EventRecord
{
 EventKind what;
 UInt32 message;
 UInt32 when;
 Point where;
 EventModifiers modifiers;
};

typedef struct EventRecord EventRecord;

Field Descriptions
what Indicates the type of event received, which may be represented by one of the following

constants:
nullEvent = 0 No other pending events.
mouseDown = 1 Mouse button pressed.
mouseUp = 2 Mouse button released.
keyDown = 3 Character key pressed.
keyUp = 4 Character key released.
autoKey = 5 Key held down in excess of autoKey threshold.
updateEvt = 6 Window needs to be redrawn.
activateEvt = 8 Activate/deactivate window.
osEvt = 15 Operating system event (suspend, resume or mouse moved).

message Contains additional information about the event. The content of this field depends on the
event type, as follows:

Event Type Contents of message Field
nullEvent
mouseDown
mouseUp

Undefined.

keyDown
keyUp
autoKey

Bits 0-7 = character code. Bits 8-15 = virtual key code.
Bits 16-23 = For Apple Desktop Bus keyboards, the ADB address of the
keyboard where the event occurred.

updateEvt
activateEvt

Pointer to the window to update, activate or deactivate. (For an activateEvt,
Bit 0 of the modifiers field indicates whether to activate or deactivate the
window.)

osEvt resume Bits 24-31 = suspendResumeMessage constant.
Also, a 1 in Bit 0 to indicate that the event is a resume event.
Also, a 0 or a 1 in Bit 1 to indicate if clipboard conversion is required.

osEvt suspend Bits 24-31 = suspendResumeMessage constant.
Also, a 0 in Bit 0 to indicate that the event is a suspend event.

osEvt mouse-moved Bits 24-31 = mouseMovedMessage constant.

The following constants may be used to extract certain data from, and to test certain bits in,
the message field:
charCodeMask = 0x000000FF Mask to extract ASCII character code.
keyCodeMask = 0x0000FF00 Mask to extract key code.
osEvtMessageMask = 0xFF000000 Mask to extract OS event message code.
mouseMovedMessage = 0x00FA osEvts: mouse-moved event?
suspendResumeMessage = 0x0001 osEvts: suspend/resume event?
resumeFlag = 1 osEvts: resume event or suspend event?

2-4 Version 1.0 The Classic Event Manager — Low-Level and Operating System
Events

For example, the following code example determines whether an event which has previously
been determined to be an Operating System event is a resume event, a suspend event, or a
mouse-moved event. In this example, the high byte of the message field is examined to
determine whether it contains suspendResumeMessage (0x0001) or mouseMovedMessage (0x00FA).
If it contains suspendResumeMessage, Bit 0 is then examined to determine whether the event is
a suspend event or a resume event.
switch((eventStrucPtr->message >> 24) & 0x000000FF)
{
 case suspendResumeMessage:
 if((eventRecPtr->message & resumeFlag) == 1)
 // This is a resume event.
 else
 // This is a suspend event.
 break;

 case mouseMovedMessage:
 // This is a mouse-moved event.
 break;
}

when Time the event was posted, in ticks since system startup. (A tick is approximately 1/60th of a
second.) Typically, this is used to establish the time between mouse clicks.

where Location of cursor, in global coordinates2, at the time the event was posted.
modifiers Contains information about the state of the modifier keys and the mouse button at the time

the event was posted.
For activate events, this field indicates whether the window should be activated or
deactivated.
For mouse-down events, this field indicates whether the event caused the application to be
switched to the foreground.

Bit Description
Bit 0 activateEvt: 1 if the window pointed to in the message field should be activated.

0 if the window pointed to in the message field should be deactivated.
mouseDown: 1 if the event caused the application to be switched to the foreground,

otherwise 0.
Bit 7 1 if mouse button was up, 0 if not.
Bit 8 1 if Command key down, 0 if not.
Bit 9 1 if Shiftkey down, 0 if not.
Bit 10 1 if Caps Lock key down, 0 if not.
Bit 11 1 if Option key down, 0 if not.
Bit 12 1 if Control key down, 0 if not.
Bit 13 1 if Right Shift Key down, 0 if not.
Bit 14 1 if Right Option Key down, 0 if not.
Bit 15 1 if Right Control Key down, 0 if not.

The following constants may be used as masks to test the setting of the various bits in the
modifiers field:
activeFlag = 0x0001 Window is to be activated? (activateEvt).
 Foreground switch? (mouseDown).
btnState = 0x0080 Mouse button up?
cmdKey = 0x0100 Command key down?
shiftKey = 0x0200 Shift key down?
AlphaLock = 0x0400 Caps Lock key down?
optionKey = 0x0800 Option key down?
controlKey = 0x1000 Control key down?
rightShiftKey = 0x2000 Right Shift Key down?
rightOptionKey = 0x4000 Right Option Key down?
rightControlKey = 0x8000 Right Control Key down?

2 Global coordinates are explained at Chapter 4.

The Classic Event Manager — Low-Level and Operating System EventsVersion 1.0 2-5

For example, the following code example determines whether an event which has previously
been determined to be an activate event is intended to signal the application to activate or
deactivate the window referenced in the message field:
Boolean becomingActive;

becomingActive = ((eventStrucPtr->modifiers & activeFlag) == activeFlag);

if(becomingActive)
 // Window activation code here.
else
 // Window deactivation code here.

Event Structure Examples -
Diagrammatic

Fig 3 is a diagrammatic representation of the contents of some typical event structures.

FIG 3 - EXAMPLES OF CONTENTS OF AN EVENT RECORD

KEY-DOWN EVENT WITH CONTROL KEY PRESSED MOUSE-DOWN EVENT WITH COMMAND KEY DOWN
what

message
when

where
modifiers

modifiers

= activateEvt

Time event was posted
Location of cursor

what
message

when
where

modifiers

0000000000000001
Undefined

0000000100000000

cmdKey

= mouseDown
ADB Addr Chara codeKey code
Time event was posted

0000000000000011 = keyDown

0001000000000000

controlKey

Location of cursor

UPDATE EVENT
what

message
when

where
modifiers

0000000000000110
Pointer to window

Location of cursor
Time event was posted

Undefined

= updateEvt
ACTIVATE EVENT - WINDOW TO BE ACTIVATED

Pointer to window
Time event was posted

what
message

when
where

modifiers

0000000000001000

Location of cursor
0000000000000001

activeFlag

OPERATING SYSTEM EVENT - MOUSE MOVED

00000000000000001111101000000000
what

message
when

where
modifiers

0000000000001111 = osEvt

Time event was posted
Location of cursor

Undefined

 mouseMovedMessage

OPERATING SYSTEM EVENT - RESUME

0000000100000000
what

message
when

where

0000000000001111 = osEvt

Time event was posted
Location of cursor

0000000000000001

Undefined

suspendResumeMessage resumeFlag

The WaitNextEvent Function
The WaitNextEvent function retrieves events from the Event Manager. If no events are pending for the
application, the WaitNextEvent function may allocate processor time to other applications. When
WaitNextEvent returns, the event structure contains information about the retrieved event, if any.
WaitNextEvent returns true if it retrieves any event other than a null event. If there are no events of the types
specified in the eventMask parameter (other than null events), false is returned.

Boolean WaitNextEvent(EventMask eventMask,EventRecord *theEvent,UInt32 sleep,
 RgnHandle mouseRgn)

Returns: A return code: 0 = null event; 1 = event returned.

eventMask A 16 bit binary mask which may be used to mask out the receipt of certain events.
The following constants are defined in Events.h:
mDownMask = 0x0002 Mouse button pressed.
mUpMask = 0x0004 Mouse button released.
keyDownMask = 0x0008 Key pressed.

2-6 Version 1.0 The Classic Event Manager — Low-Level and Operating System
Events

keyUpMask = 0x0010 Key released.
AutoKeyMask = 0x0020 Key repeatedly held down.
updateMask = 0x0040 Window needs updating.
activMask = 0x0100 Activate/deactivate window.
highLevelEventMask = 0x0400 High-level events (includes AppleEvents).
osMask = 0x8000 Operating system events (suspend, resume).
everyEvent = 0xFFFF All of the above.

Masked events are not removed from the event stream by the WaitNextEvent call. To
remove events from the Operating System event queue, call FlushEvents with the
appropriate mask.

theEvent Address of a 16-byte event structure.
sleep On the cooperative multitasking (see below) Mac OS 8/9, the sleep parameter specifies the

amount of time, in ticks, the application agrees to relinquish the processor if no events are
pending for it. If no events are received during this period, WaitNextEvent returns 0, with a
null event in the theEvent parameter, at the expiration of the sleep period.
On the preemptive multitasking (see below) Mac OS X, the sleep parameter is not ignored.
It simply causes WaitNextEvent to block for the specified period or until an event arrives.

Carbon Note
In order to give drivers time to run, the Classic WaitNextEvent will often return long before the
sleep time that you pass to it has expired. The Carbon WaitNextEvent does not do this; it
always waits the full sleep time.

mouseRgn The screen region inside which the Event Manager does not generate mouse-moved
events. The region should be specified in global coordinates. If the user moves the cursor
outside this region and the application is the foreground process, the Event Manager
reports mouse-moved events.
If NULL is passed as this parameter, the Event Manager does not return mouse-moved
events.

Before returning to the application, WaitNextEvent performs certain additional processing and may, in fact,
intercept the received event so that it is never received by your application. As will be seen, key-up and
key-down events are intercepted in this way in certain circumstances.

The sleep Parameter and Multitasking

Cooperative Multitasking — Mac OS 8/9
The yielding of access to the CPU by the foreground process, via WaitNextEvent's sleep parameter, is central
to the form of multitasking provided by the Mac OS 8/9 system software. That form of multitasking is
known as cooperative multitasking.
Under cooperative multitasking, individual applications continue executing until they "decide" to release
control, thus allowing the background process of another application to begin executing. Even though this
results in a usable form of multitasking, the operating system itself does not control the processor's
scheduling. Even under the best of circumstances, an individual application (which has no way of
knowing what other applications are running or whether they have a greater "need" to execute) makes
inefficient use of the processor, which often results in the processor idling when it could be used for
productive work.
Note also that, under this cooperative scheme, the assignment of zero to WaitNextEvent's sleep parameter will
cause your application to completely "hog" the CPU whenever it is in the foreground, allowing no CPU
time at all to the background processes.

Preemptive Multitasking — Mac OS X
Under preemptive multitasking, the operating system itself retains control of which body of code
executes, and for how long. No longer does one task have to depend on the good will of another task —
that is, the second task's surrender of control — to gain access to the CPU.

The Classic Event Manager — Low-Level and Operating System EventsVersion 1.0 2-7

Flushing the Operating System Event Queue
Immediately after application launch, the FlushEvents function should be called to empty the Operating
System event queue of any low-level events left unprocessed by another application, for example, any
mouse-down or keyboard events that the user may have entered while the Finder launched the application.

Handling Events

Handling Mouse Events3

Your application receives mouse-down events only when it is the foreground process and the user clicks in
a window belonging to the application or in the menu bar. (If the user clicks in a window belonging to
another application, your application receives a suspend event.)
The first action on receipt of a mouse-down event is to determine where the cursor was when the mouse
button was pressed. A call to FindWindow will determine:

 Which of your application's windows, if any, the mouse button was pressed in.
 Which window part the mouse button was pressed in. In this context, a window part includes the

menu bar as well as various regions within the window.
The following constants, defined in MacWindows.h, may be used to test the value returned by FindWindow:

inDesk = 0 In none of the following.
inNoWindow = 0 In none of the following.
inMenuBar = 1 In the menu bar.
inContent = 3 Anywhere in the content region except the grow region if the window
 is active. Anywhere in the content region including the grow region
 if the window is inactive.
inDrag = 4 In the drag region.
inGrow = 5 In the grow/resize region (active window only).
inGoAway = 6 In the close region (active window only).
inZoomIn = 7 In the zoom-in region (active window only).
inZoomOut = 8 In the zoom-out region (active window only).
inCollapseBox = 11 In the collapse/minimize region (active window only).
inProxyIcon = 12 In the window proxy icon (active window only).

In the Content Region
If the cursor was in the content region4 of the active window, your application should perform the action
that is appropriate to the application. If the window has scroll bars, and since scroll bars actually occupy
part of the content region, your application should first determine whether the cursor was in the scroll bars
— or, indeed, in any other control — and respond appropriately.

In the Title Bar, Size Box, Zoom Box,
Close Box, Collapse Box, or Window
Proxy Icon

Note
In the following, Mac OS 8/9 terminology is used. Size box equates to resize control. Zoom box equates to
zoom button. Close box equates to close button. Collapse box equates to minimise button.

If the cursor was in one of the non-content regions of the active window, your application should perform
the appropriate actions for that region as follows:

 Title Bar. If the cursor was in the title bar, your application should do one of the following:

3 Events related to the movement of the mouse are not stored in the event queue. The mouse driver automatically tracks the
mouse and displays the cursor as the user moves the mouse.
4 The content region is the part of the window in which an application displays the contents of a document and the window's
controls (for example, scroll bars).

2-8 Version 1.0 The Classic Event Manager — Low-Level and Operating System
Events

 Call DragWindow to allow the user to drag the window to a new location. DragWindow retains
control until the mouse button is released. (See Chapter 4.)

 Use an alternative approach introduced with the Mac OS 8.5 Window Manager which first
involves a call to IsWindowPathSelect to determine whether the mouse-down event should activate
the window path pop-up menu. If IsWindowPathSelect returns true, your application should then
call WindowPathSelect to display the menu, otherwise your application should call DragWindow to
allow the user to drag the window to a new location. (See Chapter 16.)

 Size Box. If the cursor was in the size box, your application should call to ResizeWindow, which
tracks user actions while the mouse button remains down. When the mouse button is released,
ResizeWindow draws the window in its new size.

 Zoom Box. If the cursor was in the zoom box, your application should call to
IsWindowInStandardState to determine whether the window is currently in the standard state or the user
state. ZoomWindowIdeal should then be called to zoom the window to the appropriate state, and the
window's content region should be redrawn.

 Close Box. If the cursor was in the close box, your application should call TrackGoAway to track
user actions while the mouse button remains down. TrackGoAway, which returns only when the
mouse is released, returns true if the cursor is still inside the close box when the mouse button is
released, and false otherwise.

 Collapse Box. If the cursor was in the collapse box, your application should do nothing,
because the system will collapse (Mac OS 8/9) or minimise (Mac OS X) the window for you.

 Window Proxy Icon. If the cursor was in the window proxy icon, your application should
call TrackWindowProxyDrag, which handles all aspects of the drag process while the user drags the
proxy icon. (See Chapter 16.)

In the Menu Bar
If the cursor was in the menu bar, your application should first adjust its menus, that is, enable and disable
items and set marks (for, example, checkmarks) based on the context of the active window. It should then
call MenuSelect, which handles all user action until the mouse button is released.
When the mouse button is released, MenuSelect returns a long integer containing, ordinarily, the menu ID in
the high word and the chosen menu item in the low word. However, if the cursor was outside the menu
when the button was released, the high word contains 0.

In an Inactive Application Window
If the mouse click was in an inactive application window, FindWindow can return only the inContent or inDrag
constant. If inContent is reported, your application should bring the inactive window to the front using
SelectWindow.
Ordinarily, the first click in an inactive window should simply activate the window and do nothing more.
However, if the mouse click is in the title bar, for example, you could elect to have your application
activate the window and allow the user to drag the window to a new location, all on the basis of the first
mouse-down.

Detecting Mouse Double Clicks
Double clicks can be detected by comparing the time of a mouse-up event with that of an immediately
following mouse-down. GetDoubleTime returns the time difference required for two mouse clicks to be
interpreted as a double click.

Handling Keyboard Events
After retrieving a key-down event, an application should determine which key was pressed and which
modifier keys (if any) were pressed at the same time. Your application should respond appropriately when
the user presses a key, or combination of keys. For example, your application should allow the user to
choose a frequently used menu command by using its keyboard equivalent.

The Classic Event Manager — Low-Level and Operating System EventsVersion 1.0 2-9

Character Code and Virtual Key Code
The low-order word in the message field contains the character code and virtual key code corresponding
to the key pressed by the user.
For a specific key on a particular keyboard, the virtual key code is always the same. The system uses a
key-map ('KMAP') resource to determine the virtual key code that corresponds to a specific physical key,
The system software then takes this virtual key code and uses a keyboard layout ('KCHR') resource to map
the virtual keycode to a specific character code. Any given script system (that is, writing system) has one
or more 'KCHR' resources (for example, a French 'KCHR' and a U.S. 'KCHR') which determine whether virtual
key codes are mapped to, again for example, the French or the U.S. character set.
Generally speaking, your application should use the character code rather than the virtual key code when
responding to keyboard events. The following constants may be used as masks to access the virtual key
code and character code in the message field:

keyCodeMask = 0x0000FF00 Mask to extract key code.
charCodeMask = 0x000000FF Mask to extract ASCII character code.

Checking for Keyboard Equivalents
In its initial handling of key-down and auto-key events, the application should first extract the character
code from the message field and then check the modifiers field to determine if the Command key was
pressed at the time of the event. If the Command key was down, the menus should be adjusted prior to
further processing of the event. This further processing must necessarily accommodate the possibility that
one or more of the modifier keys (Shift, Option, and Control) were also down at the same time as the
Command key 5 . If the Command key was not down, the appropriate function should be called to further
handle the event.

Checking For a Command-Period Key
Combination

Your application should allow the user to cancel a lengthy operation by using the Command-period
combination. This can be implemented by periodically examining the state of the keyboard using GetKeys
or, alternatively, by calling CheckEventQueueForUserCancel to scan the event queue for a Command-period
keyboard event. The demonstration program at Chapter 25 contains a demonstration of the latter method.

Events Not Returned to the Application
Certain keyboard events will not, or may not, be returned to your application. These are as follows:

 Command-Shift-Numeric Key Combinations. Some keystroke combinations are
handled by the Event Manager and are thus not returned to your application. These include certain
Command-Shift-numeric key combinations, for example (on Mac OS 8/9), Command-Shift-3 to
take a snapshot of the screen. These key combinations invoke a function that takes no parameters
and which is stored in an 'FKEY' resource with a resource ID corresponding to the number key in the
Command-Shift-numeric key combination. (Note that IDs of 1 to 4 are reserved by Apple.)

Carbon Note
Function key functions are not supported in Carbon.

 Key-Up Events. At application launch, the Operating System initialises another event mask,
called the system event mask, to exclude key-up messages. If an application needs to receive key-
up events, the system event mask must be changed using the SetEventMask function.

5 A menu item can be assigned a keyboard equivalent, that is, any combination of the Command key, optionally one or
more modifier keys (Shift, Option, Control), and another key. A Command-key equivalent such as Command-C is thus, by
definition, also a keyboard equivalent.

2-10 Version 1.0 The Classic Event Manager — Low-Level and Operating System
Events

Handling Update Events
Handling Update Events — Mac OS 8/9

The Update Region
On Mac OS 8/9, when one window covers another and the user moves the front window, the Window
Manager generates an update event so that the contents of the newly exposed area of the rear window can
be updated, that is, redrawn.
The Window Manager keeps track of all areas of a window's content region that need to be redrawn and
accumulates them in a region called the update region. When the application calls WaitNextEvent, the
Event Manager determines whether any windows have a non-empty update region. If a non-empty update
region is found, the Event Manager reports an update event to the appropriate application. Update events
are issued for the front window first when more than one window needs updating,

Updating the Window
Upon receiving the update event, your application should first call BeginUpdate, which temporarily replaces
the visible region of the window's graphics port with the intersection of the visible region and the update
region and then clears the update region6. (If the update region is not cleared, the Event Manager will
continue to send an endless stream of update events. Accordingly, it is absolutely essential that BeginUpdate
be called in response to all update events.)
Your application should then draw the window's contents. (Note that, to prevent the unnecessary drawing
of unaffected areas of the window, the system limits redrawing to the visible region, which at this point
corresponds to the update region as it was before BeginUpdate cleared it.)
EndUpdate should then be called to restore the normal visible region.
Update functions should first determine if the window is a document window or a modeless dialog and call
separate functions for redrawing the window or the dialog accordingly. (See Chapter 8.)

Handling Update Events — Mac OS X
On Mac OS X, windows are double-buffered, meaning that your application does not draw into the
window's graphics port itself but rather into a separate buffer. The Window Manager flushes the buffer to
the window's graphics port when your application calls WaitNextEvent. On Mac OS X, your application
does not require update events to cater for the situation where part, or all, of a window's content region has
just been exposed as a result of the user moving an overlaying window.
On Mac OS X, the receipt of an update event simply means that your application should draw the required
contents of the window. The swapping of visible and update regions required on Mac OS 8/9 is not
required, so calls to BeginUpdate and EndUpdate are irrelevant (and ignored) on Mac OS X.

Updating Windows in the Background
Recall that your application will receive update events when it is in the background if the application's
'SIZE' resource so specifies.

Handling Activate Events
Whenever your application receives a mouse-down event, it should first call FindWindow to determine if the
user clicked in a window other than the active window. If the click was, in fact, in a window other than the
active window, SelectWindow should be called to begin the process of activating that window and
deactivating the currently active window.
SelectWindow does some of the activation/deactivation work for you, such as removing the highlighting
from the window being deactivated and highlighting the window being activated. It also generates two
activate events so that, at your application's next two requests for an event, an activate event is returned for
the window being deactivated followed by an activate event for the window being activated. In response,

6 This process is explained in more detail at Chapter 4.

The Classic Event Manager — Low-Level and Operating System EventsVersion 1.0 2-11

your application must complete the action begun by SelectWindow, performing such actions as are necessary
to complete the activation or deactivation process. Such actions might include, for example, showing or
hiding the scroll bars, restoring or removing highlighting from any selections, adjusting menus, etc.
The message field of the event structure contains a reference to the window being activated or deactivated
and bit 0 of the modifiers field indicates whether the window is being activated or deactivated. The
activeFlag constant may be used to test the state of this bit.

Carbon Note
When the user switches between your application and another application, your application is notified of the
switch through Operating System (suspend and resume) events.

In a Classic application, if the application's 'SIZE' resource has the acceptSuspendResumeEvents flag set and the
doesActivateOnFGSwitch flag not set, your application receives an activate event immediately following all suspend
and resume events. This means that the application can rely on the receipt of those activate events to trigger
calls to its window activation/deactivation functions when a major switch occurs.

On the other hand, if a Classic application has both the acceptSuspendResumeEvents and the doesActivateOnFGSwitch
flags set, it does not receive an activate event immediately following suspend and resume events. In this case,
the application must call its window activation/deactivation functions whenever it receives a suspend or resume
event, in addition to the usual call made in response to an activate event.

The generally accepted practise in Classic applications is to set the doesActivateOnFGSwitch flag whenever the
acceptSuspendResumeEvents flag is set.

In a Carbon application, activate events are invariably received along with all suspend and resume events
regardless of the doesActivateOnFGSwitch flag setting. This would suggest that the doesActivateOnFGSwitch flag is
irrelevant in a Carbon application and need never be set. However, the correct generation of activate events
requires that this flag always be set in a Carbon application.

The upshot is that, in Carbon applications, and despite the fact that the the doesActivateOnFGSwitch flag should still
be set, window activation/deactivation functions need never be called on suspend and resume events.

Handling Null Events
The Event Manager reports a null event when the application requests an event and the application's event
stream does not contain any of the requested event types. The WaitNextEvent function reports a null event
by returning false and placing nullEvt in the what field.
When your application receives a null event, and assuming it is the foreground process, it can perform
what is known as idle processing, such as blinking the insertion point caret in the active window of the
application.
As previously stated, your application's 'SIZE' resource can specify that the application receive null events
while it is in the background. If your application receives a null event while it is in the background, it can
perform tasks or do other processing.
In order not to deny a reasonable amount of processor time to other applications, idle processing and
background processing should generally be kept to a minimum.

Handling Suspend and Resume Events
When an Operating System event is received, the message field of the event structure should be tested with
the constants suspendResumeMessage and mouseMovedMessage to determine what type of event was received.
If this test reveals that the event was a suspend or resume event, bit 0 should be tested with the constant
resumeFlag to ascertain whether the event was a suspend event or a resume event.
WaitNextEvent returns a suspend event when your application has been switched to the background and
returns a resume event when your application becomes the foreground process.

Carbon Note

2-12 Version 1.0 The Classic Event Manager — Low-Level and Operating System
Events

There is a fundamental difference between the receipt of suspend events in Carbon applications as compared
with Classic applications. In Classic applications, suspend events are received when your application is about
to be switched to the background, that is, the application does not actually switch to the background until it
makes its next request to receive an event from the Event Manager. In Carbon applications, suspend events are
received after the application has been switched to the background.

On receipt of a suspend event, your application should do anything necessary to reflect the fact that it is
now in the background. When an application receives a resume event, it should do anything necessary to
reflect the fact that it is now in the foreground and set the mouse cursor to the arrow shape.

Handling Mouse-Moved Events
Mouse-moved events are used to trigger a change in the appearance of the cursor according to its position
in a window. For example, when the user moves the cursor outside the text area of a document window,
applications typically change its shape from the I-beam shape to the standard arrow shape.
The main requirement is to specify a region in the mouseRgn parameter of the WaitNextEvent function. This
causes the Event Manager to report a mouse-moved event if the user moves the cursor outside that region.
On receipt of the mouse-moved event, the application can change the shape of the cursor.
An application might define two regions: a region which encloses the text area of a window (the I-beam
region) and a region which defines the scroll bars and all other areas outside the text area (the arrow
region). By specifying the I-beam region to WaitNextEvent, the mouse driver continues to display the I-
beam cursor until the user moves the cursor out of this region. When the cursor moves outside the region,
WaitNextEvent reports a mouse-moved event. Your application can then change the I-beam cursor to the
arrow cursor and change the mouseRgn parameter to the non-I-beam region. The cursor now remains an
arrow until the user moves the cursor out of this region, at which point your application receives another
mouse-moved event.
The application must, of course, recalculate and change the mouseRgn parameter immediately it receives a
mouse-moved event. Otherwise, mouse-moved events will be continually received as long as the cursor is
outside the original region.
The appearance of the cursor may be changed using the QuickDraw function SetCursor or the Appearance
Manager function SetThemeCursor. (See Chapter 6 and Chapter 13.)
Cursor setting functions should account for whether a document window or modeless dialog is active and
set the cursor appropriately.

Handling Events in Alerts and Dialogs
The handling of events in alerts and dialogs is addressed in detail at Chapter 8. The following is a brief
overview only.

Modal and Movable Modal Alerts
The Dialog Manager functions Alert, NoteAlert, CautionAlert, StopAlert, and StandardAlert are used to invoke
modal and movable modal alerts and to handle all user interaction while the alert remains open. The
Dialog Manager handles all the events generated by the user until the user clicks a button (typically, the OK
or Cancel button). When the user clicks the OK or Cancel button, the Dialog Manager closes the alert and
reports the user's action to the application, which is responsible for performing any appropriate subsequent
actions.

Modal and Movable Modal Dialogs
For modal and movable modal dialogs, the Dialog Manager function ModalDialog is used to handle all user
interaction while the dialog is open. When the user selects an item, ModalDialog reports the selection to the
application, in which case the application is responsible for performing the action associated with that
item. An application typically calls ModalDialog repeatedly, responding to clicks on enabled items as
reported by ModalDialog, until the user selects the OK or Cancel button.

The Classic Event Manager — Low-Level and Operating System EventsVersion 1.0 2-13

Modeless Dialogs
For modeless dialogs, you can use the function IsDialogEvent to determine whether the event occurred while
a modeless dialog was the frontmost window and then, optionally, use the function DialogSelect to handle
the event if it belongs to a modeless dialog. DialogSelect is similar to ModalDialog except that it returns
control after every event, not just events relating to an enabled item.

The 'SIZE' Resource
Several references have been made in the preceding to the application's 'SIZE' resource because some
(though not all) of the flag fields in this resource are relevant to the subject of events.
An application's 'SIZE' resource informs the Operating System:

 About the memory requirements of the application.
 About certain scheduling options (for example, whether the application can accept suspend and

resume events).
 Whether the application:

 Supports stationery documents.
 Supports TextEdit's inline input services.
 Wishes to receive notification of the termination of any application it has launched.
 Wishes to receive high-level events.

The 'SIZE' resource comprises a 16-bit flags field, which specifies the operating characteristics of your
application, followed by two 32-bit size fields, one indicating the minimum size, and one the preferred
size, of the application's partition.

Resource ID
The 'SIZE' resource created for your application should have a resource ID of -1. If, on Mac OS 8/9, the
user modifies the preferred size in the Finder's Get Info window, the Operating System creates a new 'SIZE'
resource having an ID of 0. If it exists, this latter resource will be invoked by the Operating System at
application launch. If it does not exist, the Process Manager looks for the original 'SIZE' resource with ID -
1.

Creating a 'SIZE' Resource in CodeWarrior
It is possible to create a 'SIZE' resource use Resorcerer; however, it is far more convenient to use the built-in
'SIZE' resource creation facility within CodeWarrior.
Flags Fields. In CodeWarrior, the bits of the flags field can be set as desired using the 'SIZE' Flags
pop-up menu in the PPC Target sections of the Settings dialog, which appears when <Project Name>
Settings… is chosen from the Edit Menu. The following describes the meanings of the items in the pop-up
menu, and thus of the relevant bits of the 16-bit flags field. Those items relevant to low-level and
Operating System events appear on a gray background.

'SIZE' Flags Pop-Up
Menu

Meaning When Set Meaning When Not Set

acceptSuspendResumeEvents Your application can process, and thus
wants to receive, suspend and resume
events. (When this flag is set, the
doesActivateOnFGSwitch flag should also
normally be set.)

Your application does not want to receive
suspend and resume events.

canBackground Your application wants to receive null
event processing time while in the
background and/or your application wants
to receive suspend events.

Your application does no background
processing and thus does not want to
receive null events when it is in the
background and/or your application does

2-14 Version 1.0 The Classic Event Manager — Low-Level and Operating System
Events

not want to receive suspend events.
doesActivateOnFGSwitch (In Classic applications, setting this flag means that your application does not want to

receive activate events associated with suspend and resume events, and will thus activate
and deactivate its windows in response to suspend and resume events as well as activate
events.
In a Carbon application, activate events are invariably received along with all
suspend and resume events regardless of the doesActivateOnFGSwitch flag setting.
This would suggest that the doesActivateOnFGSwitch flag is irrelevant in a Carbon
application and need never be set. However, the correct generation of activate
events requires that this flag always be set in a Carbon application.)

onlyBackground Your application runs only in the
background. (Usually, this is because it
does not have a user interface and cannot
run in the foreground.)

Your application runs in the foreground
and the background.

getFrontClicks Your application wants to receive the
mouse-down and mouse-up events that are
used to bring your application into the
foreground when the user clicks in your
application's frontmost window.

Your application does not want to receive
the mouse-down and mouse-up events that
are used to bring your application into the
foreground.

acceptAppDiedEvents Your application wants to be notified
whenever an application launched by your
application terminates or crashes. (This
information is received via an Apple
event.)

Your application does not want to be
notified whenever an application launched
by your application terminates or crashes.

is32BitCompatible (In pre-Mac OS 8 versions of the system software, setting this flag indicated that your
application could be run with either the 32-bit Memory Manager or the 24-bit Memory
Manager. Unsetting this flag inicated that your application could not be run with the 32-
bit Memory Manager.
No Power Macintosh supports the 24-bit mode. Accordingly, this flag is irrelevant in
Carbon and should be left unset.)

isHighLevelEventAware Your application can send and receive
high-level events. (Your application must
support the four required Apple events (see
Chapter 10) if this flag is set.)

The Event Manager does not give your
application high-level events when it calls
WaitNextEvent.

For reasons unknown, this flag must always be set in Carbon applications. If this flag is not set, this alert will appear at
compile time "Could not launch (application name) because the library ">>CarbonLib<<" could not be found."
localAndRemoteHLEvents Your application is to be visible to

applications running on other computers on
a network.

Your application does not receive high-
level events across a network.

isStationeryAware Your application can recognise stationery
documents.

Your application cannot recognise
stationery documents. If the user opens a
stationery document, the Finder duplicates
the document and prompts the user for a
name for the duplicate document.

useTextEditServices Your application can use the inline text
services provided by TextEdit.

Your application cannot use the inline text
services provided by TextEdit.

isDisplayManagerAware Your application can handle the Display
Notice event, which tells your application
to move its windows after the monitor
settings have changed.

When the monitor settings are changed, the
DisplayManager moves your application’s
windows so that they do not disappear off
the screen.

Size Fields. For Mac OS 8/9, the minimum and preferred sizes of the application's partition may be
set in the Preferred Heap Size (k) and MinimumHeap Size (k) sections of the PPC Target section of the
Settings dialog.

The Classic Event Manager — Low-Level and Operating System EventsVersion 1.0 2-15

Main Event Manager Constants, Data Types and
Functions

Constants
Event Codes
nullEvent = 0 No other pending events.
mouseDown = 1 Mouse button pressed.
mouseUp = 2 Mouse button released.
keyDown = 3 Character key pressed.
keyUp = 4 Character key released.
autoKey = 5 Key held down in excess of autoKey threshold.
updateEvt = 6 Window needs to be redrawn.
activateEvt = 8 Activate/deactivate window.
osEvt = 15 Operating system event (suspend, resume or mouse moved).

Event Masks
mDownMask = 0x0002 Mouse button pressed.
mUpMask = 0x0004 Mouse button released.
keyDownMask = 0x0008 Key pressed.
keyUpMask = 0x0010 Key released.
autoKeyMask = 0x0020 Key repeatedly held down.
updateMask = 0x0040 Window needs updating.
activMask = 0x0100 Activate/deactivate window.
highLevelEventMask = 0x0400 High-level events (includes AppleEvents).
osMask = 0x8000 Operating system events (suspend, resume).
everyEvent = 0xFFFF All of the above.Event Message

Masks for Keyboard Events
keyCodeMask = 0x0000FF00 Mask to extract key code.
charCodeMask = 0x000000FF Mask to extract ASCII character code.

Message Codes For Operating System Events
osEvtMessageMask = 0xFF000000 Mask to extract OS event message code.
mouseMovedMessage = 0x00FA For osEvts, test for mouse-moved event.
suspendResumeMessage = 0x0001 For osEvts, test for suspend/resume event.
resumeFlag = 1 For osEvts, test Bit 0.

Constants Corresponding to Bits in the modifiers Field
activeFlag = 0x0001 Set if window being activated (activateEvt).
 Set if event caused a foreground switch (mouseDown).
btnState = 0x0080 Set if mouse button up.
cmdKey = 0x0100 Set if Command key down.
shiftKey = 0x0200 Set if Shift key down.
alphaLock = 0x0400 Set if Caps Lock key down.
optionKey = 0x0800 Set if Option key down.
controlKey = 0x1000 Set if Control key down.
rightShiftKey = 0x2000 Set if Right Shift Key down.
rightOptionKey = 0x4000 Set if Right Option Key down.
rightControlKey = 0x8000 Set if Right Control Key down.

Data Types
Event Structure
struct EventRecord
{
 EventKind what; // Event code.
 UInt32 message; // Event message.
 UInt32 when; // Ticks since system startup.
 Point where; // Mouse location in global coordinates.
 EventModifiers modifiers; // Modifier flags.
} EventRecord;
typedef struct EventRecord EventRecord;

Functions
Receiving Events
Boolean WaitNextEvent(EventMask eventMask,EventRecord *theEvent,UInt32 sleep,

2-16 Version 1.0 The Classic Event Manager — Low-Level and Operating System
Events

 RgnHandle mouseRgn);
Boolean EventAvail(EventMask eventMask,EventRecord *theEvent);
void FlushEvents(EventMask whichMask,EventMask stopMask);
Boolean GetNextEvent(EventMask eventMask,EventRecord *theEvent)
void SetEventMask(EventMask value);

Reading the Mouse
void GetMouse(Point *mouseLoc);
Boolean Button(void);
Boolean StillDown(void);
Boolean WaitMouseUp(void);

Reading the KeyBoard
void GetKeys(KeyMap theKeys);
UInt32 KeyTranslate(const void *transData,UInt16 keycode,UInt32 *state);

Getting Timing Information
UInt32 TickCount(void);
UInt32 GetDblTime(void);
UInt32 GetCaretTime(void);

The Classic Event Manager — Low-Level and Operating System EventsVersion 1.0 2-17

Demonstration Program LowEvents Listing
// ***
// LowEvents.c CLASSIC EVENT MODEL
// ***
//
// This program contains a main event loop function, together with subsidiary functions which
// perform nominal handling only of low-level and Operating System events. It opens a window
// in which the types of all received low-level and Operating System events are displayed. It
// terminates when the user clicks the window's close box.
//
// Event handling is only nominal in this program because its main purpose is to demonstrate
// the basics of an application's main event loop. Programs in later chapters demonstrate
// the full gamut of individual event handling.
//
// The program utilises the following resources:
//
// • A 'plst' resource.
//
// • A 'WIND' resource (purgeable).
//
// • A 'SIZE' resource with the acceptSuspendResumeEvents, canBackground,
// doesActivateOnFGSwitch, and isHighLevelEventAware flags set.
//
// ***

//
………
………………………………………………… includes

#include <Carbon.h>

//
………
…………………………………………………… defines

#define rWindowResource 128

#define topLeft(r) (((Point *) &(r))[0])
#define botRight(r) (((Point *) &(r))[1])

//
………
…………………………… global variables

Boolean gDone;
RgnHandle gCursorRegionHdl;

//
………
…………………… function prototypes

void main (void);
void doPreliminaries (void);
void doNewWindow (void);
void eventLoop (void);
void doEvents (EventRecord *);
void doMouseDown (EventRecord *);
void doUpdate (EventRecord *);
void doOSEvent (EventRecord *);
void drawEventString (Str255);
void doAdjustCursor (WindowRef);

// ** main

void main(void)
{
 doPreliminaries();
 doNewWindow();
 eventLoop();
}

// *** doPreliminaries

void doPreliminaries(void)
{
 MoreMasterPointers(48);

2-18 Version 1.0 The Classic Event Manager — Low-Level and Operating System
Events

 InitCursor();
 FlushEvents(everyEvent,0);
}

// *** doNewWindow

void doNewWindow(void)
{
 WindowRef windowRef;

 if(!(windowRef = GetNewCWindow(rWindowResource,NULL,(WindowRef) -1)))
 {
 SysBeep(10);
 ExitToShell();
 }

 SetPortWindowPort(windowRef);
 TextSize(10);
}

// *** eventLoop

void eventLoop(void)
{
 EventRecord eventStructure;
 Boolean gotEvent;

 gDone = false;
 gCursorRegionHdl = NewRgn();
 doAdjustCursor(FrontWindow());

 while(!gDone)
 {
 gotEvent = WaitNextEvent(everyEvent,&eventStructure,180,gCursorRegionHdl);
 if(gotEvent)
 doEvents(&eventStructure);
 else
 {
 if(eventStructure.what == nullEvent)
 drawEventString("\p • nullEvent");
 }
 }
}

// ** doEvents

void doEvents(EventRecord *eventStrucPtr)
{
 switch(eventStrucPtr->what)
 {
 case mouseDown:
 drawEventString("\p • mouseDown");
 doMouseDown(eventStrucPtr);
 break;

 case mouseUp:
 drawEventString("\p • mouseUp");
 break;

 case keyDown:
 drawEventString("\p • keyDown");
 break;

 case autoKey:
 drawEventString("\p • autoKey");
 break;

 case updateEvt:
 drawEventString("\p • updateEvt");
 doUpdate(eventStrucPtr);
 break;

 case activateEvt:
 drawEventString("\p • activateEvt");
 break;

 case osEvt:
 drawEventString("\p • osEvt - ");

The Classic Event Manager — Low-Level and Operating System EventsVersion 1.0 2-19

 doOSEvent(eventStrucPtr);
 break;
 }
}

// *** doMouseDown

void doMouseDown(EventRecord *eventStrucPtr)
{
 WindowPartCode partCode;
 WindowRef windowRef;

 partCode = FindWindow(eventStrucPtr->where,&windowRef);

 switch(partCode)
 {
 case inContent:
 if(windowRef != FrontWindow())
 SelectWindow(windowRef);
 break;

 case inDrag:
 DragWindow(windowRef,eventStrucPtr->where,NULL);
 doAdjustCursor(windowRef);
 break;

 case inGoAway:
 if(TrackGoAway(windowRef,eventStrucPtr->where))
 gDone = true;
 break;
 }
}

// ** doUpdate

void doUpdate(EventRecord *eventStrucPtr)
{
 BeginUpdate((WindowRef) eventStrucPtr->message);
 EndUpdate((WindowRef) eventStrucPtr->message);
}

// *** doOSEvent

void doOSEvent(EventRecord *eventStrucPtr)
{
 Cursor arrow;

 switch((eventStrucPtr->message >> 24) & 0x000000FF)
 {
 case suspendResumeMessage:
 if((eventStrucPtr->message & resumeFlag) == 1)
 {
 SetCursor(GetQDGlobalsArrow(&arrow));
 DrawString("\pResume");
 }
 else
 DrawString("\pSuspend");
 break;

 case mouseMovedMessage:
 doAdjustCursor(FrontWindow());
 DrawString("\pMouse-moved");
 break;
 }
}

// *** drawEventString

void drawEventString(Str255 eventString)
{
 WindowRef windowRef;
 RgnHandle tempRegion;
 Rect portRect;

 windowRef = FrontWindow();
 tempRegion = NewRgn();

 GetWindowPortBounds(windowRef,&portRect);
 ScrollRect(&portRect,0,-15,tempRegion);

2-20 Version 1.0 The Classic Event Manager — Low-Level and Operating System
Events

 DisposeRgn(tempRegion);

 MoveTo(8,340);
 DrawString(eventString);
}

// ** doAdjustCursor

void doAdjustCursor(WindowRef windowRef)
{
 RgnHandle myArrowRegion;
 RgnHandle myIBeamRegion;
 Rect cursorRect;
 Point mousePt;
 Cursor arrow;

 myArrowRegion = NewRgn();
 myIBeamRegion = NewRgn();
 SetRectRgn(myArrowRegion,-32768,-32768,32767,32767);

 GetWindowPortBounds(windowRef,&cursorRect);
 SetPortWindowPort(windowRef);
 LocalToGlobal(&topLeft(cursorRect));
 LocalToGlobal(&botRight(cursorRect));

 RectRgn(myIBeamRegion,&cursorRect);
 DiffRgn(myArrowRegion,myIBeamRegion,myArrowRegion);

 GetGlobalMouse(&mousePt);
 if(PtInRgn(mousePt,myIBeamRegion))
 {
 SetCursor(*(GetCursor(iBeamCursor)));
 CopyRgn(myIBeamRegion,gCursorRegionHdl);
 }
 else
 {
 SetCursor(GetQDGlobalsArrow(&arrow));
 CopyRgn(myArrowRegion,gCursorRegionHdl);
 }

 DisposeRgn(myArrowRegion);
 DisposeRgn(myIBeamRegion);
}

// ***

Demonstration Program LowEvents Comments
When the program is run, the user should move the mouse cursor inside and outside the window, click the mouse inside and
outside the window, drag the window, and press and release keyboard keys, noting the types of events generated by these
actions as printed on the scrolling display inside the window.

The user should also note:

• The basic window deactivation and activation that occurs when the mouse is clicked outside, and then inside the window.

• That when another window is positioned over part of the program's window and then dragged to expose more of the
program's window, an update event is received on Mac OS 8/9 but not on Mac OS X.

The program may be terminated by a click in the window's close box.

The general "flow" of the program is illustrated in the flow chart at Fig 4.

defines
rWindowResource establishes a constant for the ID of the 'WIND' resource.

The remaining two lines define two common macros. The first converts the top and left fields of a Rect to a Point. The
second converts the bottom and right field of a Rect to a Point.

Global Variables
The global variable gDone controls the termination of the main event loop and thus of the program. gCursorRegionHdl will be
assigned the handle to a region to be passed in the mouseRgn parameter of the WaitNextEvent function.

The Classic Event Manager — Low-Level and Operating System EventsVersion 1.0 2-21

main
The main function calls the functions for performing certain preliminary actions common to most applications and for creating
the window. It then calls the function containing the main event loop.

doPreliminaries
doPreliminaries is the standard "do prelimaries" function which will be used in all subsequent Classic event model
demonstration programs.

FlushEvents empties the Operating System event queue of any low-level events left unprocessed by another application, for
example, any mouse-down or keyboard events that the user may have entered while this program was being launched.

doNewWindow
The function doNewWindow opens the window in which the types of low-level and Operating System events will be printed as
they occur. The 'WIND' resource passed as the first parameter specifies that the window has a close box and a drag (title)
bar. The window's graphics port is set as the current port for drawing and the text size is set to 10 points.

eventLoop
eventLoop is the main event loop.

The global variable gDone is set to false before the event loop is entered. This variable will be set to true when the user clicks
on the window's close box. The event loop (the while loop) terminates when gDone is set to true.

The calls to NewRgn and doAdjustCursor have to do with the generation of mouse-moved events. The NewRgn call allocates
storage for a Region object and initialises the contents of the region to make it an empty region. As will be seen, this first call
to doAdjustCursor defines two regions (one for the arrow cursor and one for the I-Beam cursor) and copies the handle to one
of them (depending on the current position of the mouse cursor) to the global variable gCursorRegionHandle.

In the call to WaitNextEvent:

• The event mask everyEvent ensures that all types of low-level and Operating System events will be returned to the
application (except keyUp events, which are masked out by the system event mask).

• eventStructure is the EventRecord structure which, when WaitNextEvent returns, will contain information about the event.

• 180 represents the number of ticks for which the application agrees to relinquish the processor if no events are pending
for it. 180 ticks equates to about three seconds.

• If the cursor is now not within the region passed in the cursorRegion parameter, a mouse-moved event will be generated
immediately.

WaitNextEvent returns 1 if an event was pending, otherwise it returns 0. If an event was pending, the program branches to
doEvent to determine the type of event and handle the event according to its type. If 0 is returned, and if the what field of
the event structure contains nullEvent, "nullEvent" is printed in the window. This will occur every three seconds in the
absence of other events.

2-22 Version 1.0 The Classic Event Manager — Low-Level and Operating System
Events

FIG 4 - LowEvents FLOWCHART

GOT AN
EVENT?

CALL
WaitNextEvent

START

OPEN
WINDOW

yes

no

mouseDown?

mouseUp?

keyDown?

autoKey?

updateEvt?

activateEvt?

osEvt?

inContent?

inDrag?

inGoAway?

CALL
BeginUpdate

CALL
DragWindow

OF FRONT
WINDOW?

CALL
SelectWindow

CALL
TrackGoAway

gDone = true

suspend
Resume

Message?

mouse
Moved

Message?

RESUME?

SUSPEND?

gDone
= true?

TrackGoAway
RETURNED

true?

END

APPROPRIATE
ACTION

yes

no

yes

yes

yes

yes

yes

yes

yes

yes

no

no

no

no

nono

no

no

CALL
EndUpdate

APPROPRIATE
ACTION

APPROPRIATE
ACTION

APPROPRIATE
ACTION

APPROPRIATE
ACTION

APPROPRIATE
ACTION

yes

yes

yes

yes

no

no

no

no

yes

yes

yes

yes

no

no no

no

gInBackground
= false

gInbackground
= true

CALL
doAdjustCursor

CALL
doAdjustCursor

CALL
doAdjustCursor

doEvents
doEvents handles some events to finality and performs initial handling of others.

On return from WaitNextEvent, the what field of the event structure contains an unsigned short integer which indicates the
type of event received. The doEvent function isolates the type of event and switches according to that type.

In this demonstration, the action taken in every case is to print the type of event in the window. In addition, and in the case
of mouse-down, update, and Operating System events only, calls to individual event handling functions are made.

Note that, in the case of an Operating System event, doEvent will only print "osEvt - " in the window. At this stage, the
program has not yet established whether the event is a suspend, resume or mouse-moved event.

Note also that the inclusion of the key-up event handling would be pointless, since key-up events are masked out by the
Operating System.

The Classic Event Manager — Low-Level and Operating System EventsVersion 1.0 2-23

doMouseDown
The function doMouseDown handles mouse-down events to completion.

FindWindow is called to get a reference to the window in which the event occurred and a part code which indicates the part of
that window in which the mouse-down occurred. The function then switches according to that part code.

The inContent case deals with a mouse-down in a window's content region. FrontWindow returns a reference to the frontmost
window. If this is not the same as the reference in the event structure's message field, SelectWindow is called to generate
activate events and to perform basic window activation and deactivation. (Actually, SelectWindow will never be called in this
demonstration because the program only opens one window, which is always the front window.)

The inDrag case deals with a mouse-down in the window's title bar (Mac OS 8/9) or title bar (Mac OS X). In this case, control
is handed over to DragWindow, which tracks the mouse and drags the window according to mouse movement until the mouse
button is released. A bounding rectangle limiting the area in which the window can be dragged may be passed in
DragWindow's third parameter. In Carbon, NULL may also be passed in this parameter. This has the effect of setting the third
parameter to the bounding box of the "desktop region" (also known as the "gray region"). The desktop region is the region
below the menu bar, including all screen real estate in a system equipped with multiple monitors.

The regions controlling the generation of mouse-moved events are defined in global coordinates. The region for the I-Beam
cursor is based on the window's graphics port's bounding rectangle. Accordingly, when the window is moved, the new
location of the port rectangle, in global coordinates, must be re-calculated so that the arrow cursor and I-Beam cursor regions
may be re-defined. The call to doAdjustCursor re-defines these regions for the new window location and copies the handle to
one of them, depending on the current location of the mouse cursor, to the global variable gCursorRegionHandle. (Note that
this call to doAdjustCursor will also be required, for the same reason, when a window is re-sized or zoomed.)

The inGoAway case deals with the case of a mouse-down in the close box (Mac OS 8/9) or close button (Mac OS X). In this
case, control is handed over to TrackGoAway, which tracks the mouse while the mouse button remains down. When the
button is released, TrackGoAway returns true if the cursor is still inside the close box, in which case the global variable gDone
is set to true, terminating the event loop and the program.

doUpdate
The function doUpdate handles update events to completion.

Although no window updating is performed by this program, it is nonetheless necessary to call BeginUpdate because,
amongst other things, BeginUpdate clears the update region, thus preventing the generation of an unending stream of update
events. The call to EndUpdate always concludes a call to BeginUpdate, undoing the results of the visible/update region
manipulations of the latter.

doOSEvent
doOSEvent first determines whether the Operating System event passed to it is a suspend/resume event or a mouse-moved
event by examining bits 24-31 of the message field. It then switches according to that determination.

In the case of a suspend/resume event, a further examination of the message field establishes whether the event was a
suspend event or a resume event. In the case of a resume event, the call to SetCursor ensures that the cursor will be set to
the arrow cursor shape when the application comes to the foreground. (With regard to the call to GetQDGlobalsArrow, see
QuickDraw Globals and Accessor Functions, below.)

In the case of a mouse-moved event (which occurs when the mouse cursor has moved outside the region whose handle is
currently being passed in WaitNextEvent's mouseRgn parameter), doAdjustCursor is called to change the handle passed in
the mouseRgn parameter according to the current location of the mouse.

drawEventString
drawEventString is incidental to the demonstration. It simply prints text in the window indicating when the various types of
events are received. ScrollRect scrolls the contents of the current graphics port within the rectangle specified in the first
parameter. The second parameter specifies the number of pixels to be scrolled to the right and the third parameter specifies
the number of pixels to scroll vertically, in this case 15 up.

doAdjustCursor
doAdjustCursor's primary purpose in this particular demonstration is to force the generation of mouse-moved events. The
fact that it also changes the cursor shape simply reflects the fact that changing the cursor shape is usually the sole reason for
generating mouse-moved events in the first place.

Basically, the function establishes two regions (the calls to NewRgn), one describing the content area of the window (in global
coordinates) and the other everything outside that. The location of the cursor, in global coordinates, is then ascertained by
the call to GetGlobalMouse. If the cursor is in the content area of the window (the I-Beam region), the cursor is set to the I-
Beam shape and the handle to the I-Beam region is copied to the global variable passed in the mouseRgn parameter in the
WaitNextEvent call in the eventLoop function. If the cursor is in the other region (the arrow region), the cursor is set to the
normal arrow shape and the arrow region is copied to the global variable passed in the mouseRgn parameter.

GetCursor reads in the system 'CURS' resource specified by the constant iBeamCursor and returns a handle to the 68-byte
Cursor structure created by the call. The parameter for a SetCursor call is required to be the address of a Cursor structure.
Dereferencing the handle once provides that address.

WaitNextEvent, of course, returns a mouse-moved event only when the cursor moves outside the "current" region, the handle
to which is passed in the mouseRgn parameter of the WaitNextEvent call. Only one mouse-moved event, rather than a
stream of mouse-moved events, will be generated when the cursor is moved outside the "current" region because:

2-24 Version 1.0 The Classic Event Manager — Low-Level and Operating System
Events

• The mouse-moved event will cause doAdjustCursor to be called.

• doAdjustCursor will thus reset the "current" region to the region in which the cursor is now located.

The cursor and cursor adjustment aspects, as opposed to the region-swapping aspects, of the doAdjustCursor function are
incidental to the demonstration. These aspects are addressed in more detail at Chapter 13.

QUICKDRAW GLOBALS AND ACCESSOR FUNCTIONS

An accessor function (GetQDGlobalsArrow) pertaining to application QuickDraw global variables is used in this
demonstration.

QuickDraw global variables are stored as part of your application's global variables. In Carbon, accessor functions are
provided, and must be used, to access the data in these globals. The accessor functions are as follows:

CGrafPtr GetQDGlobalsThePort(void); // Gets pointer to current graphics port.
Cursor* GetQDGlobalsArrow(Cursor *arrow); // Gets standard cursor arrow shape.
void SetQDGlobalsArrow(const Cursor *arrow); // Sets standard cursor arrow shape.
Pattern* GetQDGlobalsDarkGray(Pattern *dkGray); // Gets pre-defined dark gray pattern.
Pattern* GetQDGlobalsLightGray(Pattern *ltGray); // Gets pre-defined light gray pattern.
Pattern* GetQDGlobalsGray(Pattern *gray); // Gets pre-defined gray pattern.
Pattern* GetQDGlobalsBlack(Pattern *black); // Gets pre-defined black pattern.
Pattern* GetQDGlobalsWhite(Pattern *white); // Gets pre-defined white pattern.
long GetQDGlobalsRandomSeed(void); // Get random number generator seed.
void SetQDGlobalsRandomSeed(long randomSeed); // Set random number generator seed.
BitMap* GetQDGlobalsScreenBits(BitMap *screenBits); // screenBits.bounds contains
 // rectangle enclosing main screen.

The Classic Event Manager — Low-Level and Operating System EventsVersion 1.0 2-25

	THE CLASSIC EVENT MANAGER — LOW-LEVEL AND OPERATING SYSTEM EVENTS
	Demonstration Program: LowEvents
	The Two Event Managers
	Overview of the Classic Event Model
	The Main Event Loop
	Categories of Events
	Low Level Events
	Operating System Events

	Processes and Events
	Low-Level and Operating System Events, System Software, and Applications
	Priority of Events

	Obtaining Information About Events
	The Event Structure
	Field Descriptions
	Event Structure Examples - Diagrammatic

	The WaitNextEvent Function

	Returns: A return code: 0 = null event; 1 = event returned.
	Carbon Note
	The sleep Parameter and Multitasking
	Cooperative Multitasking — Mac OS 8/9
	Preemptive Multitasking — Mac OS X

	Flushing the Operating System Event Queue
	Handling Events
	Handling Mouse Events
	In the Content Region
	In the Title Bar, Size Box, Zoom Box, Close Box, Collapse Box, or Window Proxy Icon

	Note
	In the Menu Bar
	In an Inactive Application Window
	Detecting Mouse Double Clicks
	Handling Keyboard Events
	Character Code and Virtual Key Code
	Checking for Keyboard Equivalents
	Checking For a Command-Period Key Combination
	Events Not Returned to the Application

	Carbon Note
	Handling Update Events
	Handling Update Events — Mac OS 8/9
	The Update Region
	Updating the Window

	Handling Update Events — Mac OS X
	Updating Windows in the Background

	Handling Activate Events

	Carbon Note
	Handling Null Events
	Handling Suspend and Resume Events

	Carbon Note
	Handling Mouse-Moved Events

	Handling Events in Alerts and Dialogs
	Modal and Movable Modal Alerts
	Modal and Movable Modal Dialogs
	Modeless Dialogs

	The 'SIZE' Resource
	Resource ID
	Creating a 'SIZE' Resource in CodeWarrior

	Main Event Manager Constants, Data Types and Functions
	Constants
	Event Codes
	Event Masks
	Masks for Keyboard Events
	Message Codes For Operating System Events
	Constants Corresponding to Bits in the modifiers Field

	Data Types
	Event Structure

	Functions
	Receiving Events
	Reading the Mouse
	Reading the KeyBoard
	Getting Timing Information

	Demonstration Program LowEvents Listing
	Demonstration Program LowEvents Comments
	The program may be terminated by a click in the window's close box.
	defines
	Global Variables
	main
	doPreliminaries
	doNewWindow
	eventLoop
	doEvents
	doMouseDown

	The function doMouseDown handles mouse-down events to completion.
	doUpdate

	The function doUpdate handles update events to completion.
	doOSEvent
	drawEventString
	doAdjustCursor

	QUICKDRAW GLOBALS AND ACCESSOR FUNCTIONS

